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1) Finnish Geodetic Institute
2) Vienna University of Technology

Contact author: Nataliya Zubko, e-mail: nataliya.zubko@fgi.fi

Abstract

VLBI observations are generally analyzed using the least-squares method. For accurate results
the functional and stochastic models need to be well-defined. In the standard stochastic model the
variance-covariance matrix is dependent on only one stochastic parameter, described by common level
of variance. The analysis of observations can be improved by taking into account additional parameters
in the stochastic model, such as station and elevation angle dependent effects. Thus the model becomes
reliant on several stochastic properties. A stochastic model, which includes the station and the elevation
angle dependence of observations, has been implemented in the VieVS software. We present results of a
comparative analysis using a traditional and an advanced stochastic model. In the advanced stochastic
model the variance components of VLBI observations were estimated with the MINQUE method.

1. Introduction

Various parameters can be estimated from VLBI observations, such as the Earth orientation
parameters, station coordinates, troposphere delays and others. In the analysis of VLBI data
the least-squares method is frequently used. Since VLBI measurements are dependent on various
random and systematic errors, it is important to choose an appropriate model for the system. In
order to obtain accurate results, it is desirable to incorporate all these errors into a stochastic
model that is described with the variance-covariance matrix.

Within the stochastic model normally used in VLBI data analysis, the observations are assumed
to be uncorrelated and to have the same variance. This assumption simplifies the analysis of VLBI
data. However, it affects the accuracy. The correlation between VLBI observations was studied,
for example, in [1] and [2], and it was shown that the results can be improved by using a full
variance-covariance matrix. In [3] a refined stochastic model for the analysis of VLBI data was
proposed, where, instead of a common variance, several variance components are included into the
variance-covariance matrix.

In the advanced stochastic model the variance-covariance matrix is constructed so that it de-
pends on a number of variance components. Since the correlation process reveals strong station
and elevation angle dependencies, we have included the station and elevation angle dependent
variance components in our stochastic model. For estimation of variances, we apply the Minimum
Norm Quadratic Unbiased Estimation (MINQUE), developed by [4]. This method is often used for
the estimation of variance components in different applications, for example, in VLBI analysis by
[5] and [3] and in GPS analysis by [6] and [7]. The advanced stochastic model and the MINQUE
algorithm were implemented in the VieVS software [8]. We have investigated the variance compo-
nents in the variance-covariance matrix of the advanced stochastic model. Here we present results
of comparison of estimated station coordinates and polar motion obtained with two stochastic
models.
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2. Stochastic Models

In order to estimate the unknown parameters, we use the Gauss-Markoff model with two
different stochastic properties. In the first adjustment the covariance matrix is chosen as follows:

D(y) = σ2Q = σ2P−1, (1)

where σ2 is a factor describing the variance level of the observations and Q and P are the cofactor
and the weight matrices, respectively. The correlations between observations were neglected. Thus
the cofactor matrix Q is a diagonal matrix with the elements σ2i + σ2const, where σi is a formal
error derived from the correlation process for the ith observation and σconst is added to cover the
deficiency of the model. It is usually assumed to be equal to 1 cm2. The variance factor in (1) is
estimated with:

σ̂2 =
êP ê

n− u
. (2)

In the second adjustment, the covariance matrix takes the form:

D(y) =
mmax∑
m=1

σ2mVm, (3)

where σ2m(m = 1, ..., k) are variance components and Vm (m = 1, ..., k) are accompanying matrices.
It is assumed that the accompanying matrices Vm are known and the variance components σ2m need
to be estimated, for example, with the MINQUE method. In the second model, the correlations
between observations are also neglected. Therefore, the accompanying matrices Vm are diagonal
ones.

Our model includes the common level of variance σ2com, the additive variance σ2add, antenna
dependent variances (σ̂nt1)

2 and (σ̂nt2)
2 for the pair of telescopes per observation, and antenna

elevation dependent variances (σ̂mel1)
2 and (σ̂mel2)

2 for the pair of elevation angles. The variance-
covariance matrix can be expressed as follows:

D(y) = σ̂2comVcom+σ̂2addVadd+
nmax∑
n=1

(σ̂nt1)
2V n

t1+
nmax∑
n=1

(σ̂nt2)
2V n

t2+
mmax∑
m=1

(σ̂mel1)
2V m

el1+
mmax∑
m=1

(σ̂mel2)
2V m

el2, (4)

where nmax is the number of telescopes participating in the observations and mmax is a number
of gradations of telescope elevation angles.

The elements of Vcom are formal errors derived from the correlation process and Vadd is the
identity matrix. The elements of the Vt1 and Vt2 matrices are filled as follows: if in the ith

observation the telescopes with order numbers k and l have been observing, the corresponding
elements of matrices V k

t1 and V l
t2 are filled with a formal error derived from the correlator, whereas

the elements for all other V n
t1 (n 6= k) and V n

t2 (n 6= l) corresponding to the ith observation are
equal to zero. The accompanying matrices Vell are filled in the same way.

3. Results

We analyzed approximately 50 VLBI sessions observed in the year 2010 with the two stochas-
tic models. The variance components for the advanced stochastic model were obtained. Table 1
contains the mean values of estimated variances with the iterative MINQUE method and their
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standard deviations. It is important to note that for each station the number of sessions is dif-
ferent. Namely, Zelenchukskaya participated in only 10 sessions, whereas Wettzell participated in
30 sessions. Variances in this estimation can take negative values; however, the covariance matrix
(3) must be positive. An estimation of the variances requires 5-15 iterations. Note, the estimation
was impossible for some sessions due to divergence of the iterative process. Therefore within the
advanced stochastic model, some sessions cannot be processed.

Table 1. Mean values of estimated variance components of the advanced stochastic model.

Type of variance Mean value Standard deviation

Common 0.5656 0.3755

Additive 0.3728 0.2074

Wettzell 0.4789 0.4839

Matera 0.3497 0.718

Kokee 0.651 0.6807

Badary 0.7398 0.6957

Zelenchk 1.016 0.8325

Onsala60 0.4645 0.5739

Nyales20 0.03644 0.379

Westford 0.4498 0.4761

Hobart26 1.577 1.592

El. angle=5◦ − 8◦ 0.6513 0.9669

El. angle=8◦ − 11◦ 0.4773 0.6352

El. angle=11◦ − 15◦ 0.3354 0.6252

El. angle=15◦ − 20◦ 0.1962 0.4834

El. angle=20◦ − 30◦ 0.01549 0.4829

El. angle=30◦ − 45◦ 0.004851 0.3911

El. angle=45◦ − 65◦ -0.03137 0.4461

Figure 1 presents the repeatability of the X, Y, and Z coordinates of a few antennas. As one
can see, there is no large difference between the rms values of the station coordinates. The rms
values calculated from the results, where the advanced stochastic model was applied, is lower for
some stations.

Figure 2 shows residuals of polar motion xpol and ypol coordinates. The rms values of the
polar motion residuals are also lower if the advanced stochastic model is used. The difference
between the rms values for the xpol residuals is 0.017 mas, and for ypol it is 0.011 mas.

4. Conclusions

In the analysis of VLBI data the stochastic model with a common variance factor is frequently
used. The stochastic model with several variance components can slightly improve the results.
Small differences between the two approaches confirm the reliability of the traditional stochastic
model; however, for the achievement of high accuracy, more attention should be given to the model.
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Figure 1. Repeatability of station coordinates.

Figure 2. Comparison of polar motion residuals.
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